

TOO OFTEN, THE KITCHEN IS...

- Hot
- Noisy
- Smelly
- Greasy
- Slippery
- Energy Consuming

MODERN SOLUTIONS

- Lowest Exhaust Rate at Peak Performance
- Robust Filtration
- Dedicated Makeup Air
- Demand Control Ventilation
- Factory-Welded Ductwork
- Water-Based Fire Suppression

RESULT: Integrated Design

INTEGRATED KVS DESIGN

- Avoids dynamic effects
- Saves energy costs
- Ensures peak performance
- Focus on safety,
 comfort, efficiency

LOW EXHAUST RATES

LOW EXHAUST RATES

- Commercial kitchens are notorious for high energy use
 - Poor design, inefficiency
 - Results in wasted \$\$\$ to restaurant owner
- Maximizing efficiency is crucial
- · ASTM1704 & UL710

ENERGY USE IN RESTAURANTS

ASHRAE Triangle Chapter

HOW HOODS WORK

- Newton (1687) described gravity, by which hot air rises
- Cooking effluents and products of combustion rise
- Effluent volume expands to fill space

"Buoyant Thermal Plume"

ACHIEVING LOW EXHAUST RATES

- Adequate overhangs

 & vertical end panels
 reduce exhaust flow and
 ensure capture and
 containment
- Listed duct systems reduce static pressure

WHAT THE EYE SEES

Courtesy of FSTC CKV Lab

SCHLIERENTECHNOLOGY

Allows for Accurate Visualization of Air Temperature Gradients

SCHLIERENTECHNOLOGY

EFFLUENT CIRCULATION

VISUALIZE LACK OF OVERHANG FOR FIRE CONDITIONS

RECOMMENDED OVERHANG

Wall Canopy Hoods

	OVERHANG		
EQUIPMENT	FRONT	SIDE	
Charbroiler	18'' - 24''	12"	
Electric Fryer or Griddle	12''	6''	
Gas Fryer or Griddle	12"	12"	
Conveyor Oven	12"	12" past conveyor	
Convection Oven	24''	6''	
Open Burner Range	12''	12"	
Range with Shelves or	24''	12"	
Salamander	24	I Z	
Upright Broilers	18'' - 24''	12"	
Solid Fuel	24''	24''	
Woks	24''	24''	
Dishwasher	12''	24" inlet & discharge	

END PANEL PERFORMANCE

ASHRAE Triangle Chapter

Courtesy FSTC

VERTICAL END PANEL

EXHAUST RATES (LISTED VS. IMC)

Type of Hood	IMC MINIMUM REQUIRED CFM per Linear Foot of Hood			
UNLISTED	Light Duty Equip	Medium Duty Equip	Heavy Duty Equip	Extra Heavy Duty Equip
Unlisted Wall Canopy	200	300	400	550
Unlisted Backshelf	250	300	400	Not allowed

Type of Hood	TYPICAL LISTED CFM per Linear Foot of Hood			
LISTED ETL / UL 710	Light Duty Equip	Medium Duty Equip	Heavy Duty Equip	Extra Heavy Duty Equip
Listed Wall Canopy	150-200	200-300	200-400	350+
Listed Backshelf	100-200	200-300	300-400	Not recommended

LISTED ASTM 1704	Light Duty Equip	Medium Duty Equip	Heavy Duty Equip	Extra Heavy Duty Equip
Listed Wall Canopy	175	220	275	300

EQUIPMENT CLASSIFICATION

Light Duty Equipment (400-450° F) Medium Duty
Equipment
(400-450° F)

Heavy Duty Equipment (600° F) Extra Heavy Duty
Equipment
(700° F)

Ovens

Cheesemelters

Rethermalizers

Steam-Jacketed Kettles

Compartment Steamers Griddles

Fryers

Pasta Cookers

Tilting Skillets

Braising Pans

Rotisseries

Conveyor (Pizza) Ovens Open-Burner Ranges

Electric/Gas
Underfired Broilers

Salamander (Upright) Broilers

Chain Broilers

Wok Ranges

Appliances using
Solid Fuel
(Wood, Charcoal,
Briquettes and
Mesquite) to
provide all or part
of the heat source

Source: IMC

ROBUST FILTRATION

WHY FILTRATION? EFFLUENT

- Includes gaseous, liquid and solid contaminants
- Products of combustion: Carbon monoxide, carbon dioxide and nitrogen oxide
- Harmful to human health, IAQ
- Grease Characteristics:
 - Both Vapor, Small and Large Particles
 - Grease Vapor
 - Hotter cooking process = more grease vapor

GREASE PROBLEMS

- Greasy Exhaust
- Rooftop Damage
- Environmental Impact
- Grease Accumulation Behind Filters
- Significant Buildup on Fusible Links
- Fire Hazard with Grease Accumulation in Duct and Plenum

GREASE PROBLEMS

GREASE EMISSIONS

FILTER EFFICIENCY TEST

ASTM F2519:

- "Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors"
 - Pressure drop as function of airflow through the filter
 - Particulate capture efficiency by particle size
- Incorporation of filter selection and effect on design of entire system, including IAQ

FILTER EFFICIENCY TEST

ROBUST FILTRATION

Improved baffle design increases grease capture at the source

- S-Baffle + Slotted Rear Baffle
 - = Multi-Stage Filtration
- Issue of grease on the roof solved
- Fewer duct cleanings required
- Daily manual filter cleaning combined with integrated self-cleaning of hood plenum results in very little grease, reduced fire risk

DEDICATED MAKEUPAIR

MAKEUP AIR PROBLEM?

System design incorporates makeup air tempering and delivery strategy

MAKEUP AIR

- IMC 508.1.1 The temperature differential between makeup air and the air in the conditioned space shall not exceed 10°F.
 - Exceptions:
 - Makeup air that is part of the air-conditioning system
 - 2. Makeup air that does not decrease the comfort conditions of the occupied space

MAKEUP AIR: HOW & WHY

- Do No Harm: Deliver makeup air in an energy efficient manner without harming hood performance
- Makeup Air Options:
 - HVAC air via displacement diffusers, ceiling diffusers, or perforated ceiling diffusers
 - Dedicated MUA: Exhaust hood with integrated makeup air

HVAC AIR PROBLEMS

- Higher energy costs
- Humidity gains with continuous RTU cycling
- May lead to high transfer air velocities
- Must separate HVAC & MUA
 - Directional diffusers must be min. I 0' from hood
 - Perforated diffusers must be min. 5' from hood

DEDICATED MAKEUP AIR APPROACH

DEDICATED MAKEUP AIR APPROACH

Moderate Heat/Cool

EFFICIENT HEATING

HEATED MAKE-UP AIR IS RECOMMENDED

NO TEMPER ZONE

HEATING AND COOLING AIR BROUGHT INTO THE KITCHEN SPACE TEMPERATURE ZONE

SENSIBLE COOLING

COOLED MAKE-UP AIR IS RECOMMENDED

DEDICATED MAKEUP AIR

- Use DMUA unless all outside is satisfied by ventilation req's without over-stressing RTUs
- Sensible Heating & Cooling:
 55-85° F
- Supply plenum or dual plenum
- 80% DMUA: Additional air provided through HVAC RTU

DUAL PLENUM APPROACH

DUAL PLENUM APPROACH

DUAL PLENUM APPROACH

- Air velocity is critical
 - 140-160 FPM when plenum is placed 18" above front edge of hood
 - 165-185 FPM when plenum is placed 24" above front edge of hood
- Air temperature
 - 55-85° F
- Supply risers
 - Velocity 200-400 FPM
 - Multiple risers on longer hoods for better distribution

VISUAL PERFORMANCE TEST

Supply plenum approach aids in capture & containment performance

PACKAGED MUA UNIT

- 100% outside air applications
- Moderate tempering as needed
- ·Satisfies IMC 508.1
- Multiple StageCooling
- •Up to 600 CFM/ton

PROPER TEMPERING

HEATING

Direct FiredHeater - 92%efficient

- Indirect Fired
- Electric
- Steam/Hot WaterCoils

COOLING

Direct Expansion(DX)

Chilled Water Coils

DEMAND CONTROL VENTILATION

DEMAND CONTROL VENTILATION

- Automatically adjusts
 exhaust & makeup air fans
 according to cooking load
- Temperature sensor and variable frequency drives modulate fan speed
- Satisfies IMC 507.2.1.1, automatic activation requirement
- Rebates and incentives from many utility companies

FAN ENERGY SAVINGS & PENALTIES

Reduce Exhaust CFM	Savings in Fan Energy
0.1	0.27
0.2	0.47
0.3	0.66
0.4	0.78
0.5	0.87

Increase Exhaust CFM	Increase in Fan Energy
0.1	0.33
0.2	0.73
0.3	1.2
0.4	1.74
0.5	2.37

EXHAUST TEMPS VARY

FACTORY-WELDED DUCTWORK

GREASE DUCT ISSUES

- · Liquid-tight welded ducts leak
- Size and velocity
- Static pressure drop
- Integrity of welds and joints
- Number of tees and elbows
- Mitered elbows, non-radius
- Access for cleaning
- Clearance requirements

LEAKING DUCT: FIRE RISK

- IMC: Must be fully welded liquid-tight
- Heavy gauge black iron or stainless steel
- Duct leakage test: light bulb, smoke, pressure

DUCT CONSTRUCTION

IMC 506.3.2

- Joints, seams and penetrations: continuous liquidtight weld or braze made on external surface
 - Exceptions: Penetrations shall not be required... where sealed by devices listed for application
 - Internal welding shall not be prohibited provided that the joint is formed or ground smooth and provided with ready access
 - Factory-built commercial kitchen grease ducts listed and labeled

CLEARANCE TO COMBUSTIBLES

Ductwork

IMC 2009

• 506.3.6 Grease duct... serving a Type I hood shall have a clearance to combustible construction of not less than 18 inches (457 mm), and shall have a clearance to noncombustible construction and gypsum wallboard attached to noncombustible structures of not less than 3 inches (76 mm).

CLEARANCE TO COMBUSTIBLES

Exhaust Hoods

- New UL 710 version allows for hoods to have a reduced clearance to combustible rating
 - Intended for use adjacent to combustible construction of less than 18" clearance
- Temperatures on adjacent surfaces are measured and limited for rating
 - 2 Tests: limited to max 117° F above ambient
 - 4 Tests: limited to max 175° F above ambient
- Labels include appliance duty classifications

FACTORY-BUILT GREASE DUCT

- Listed to UL1978 (Single)
- Listed to UL2221 (Double)
- 100% Dye Tested at Factory
- Improved Fire Safety
- No Field Welding
- Zero & Reduced Clearance to Combustible for Double Wall Duct

ROBUST DUCTWORK DESIGN

- Correct size and velocity
 - 1500-2000 FPM
- Static pressure drop estimated accurately
- Minimize number of tees and elbows, radius not mitered elbows
- Improved access for cleaning

WATER-BASED FIRE SUPPRESSION

RECENT FIRE

RESTAURANT FIRES

- 5,900 reported restaurant structure fires annually
- \$172 million property loss
- 75 civilian fire injuries
- Cooking is the leading cause of restaurant fires (41%)
- Cooking materials (grease, oil) were the most frequent items first ignited

FIRE SUPPRESSION

60 Years of Commercial Kitchen Fire Suppression

ASHRAE Journal, June 2014

- Proper application and maintenance of suppression systems is an ongoing challenge
- Fires in commercial kitchens most often start in or near appliances

Fires are often related to inoperative appliance safety

devices

FIRE SUPPRESSION

Section 509 - Fire Protection System

509. I Where Required: Commercial cooking appliances required by section 507.2. I to have a Type I hood shall be provided with an approved automatic fire suppression system complying with the building code.

System Requirements:

- Tested and Listed to UL300 Standard
- Automatic activation
- Means of manual operation
- Appliance surface protection
- Hood plenum and duct collar

SYSTEM TYPES

- Wet Chemical Systems
 - Discharge chemical agent
 - Appliance-specific protection and/or overlapping protection
- Water-Based Systems
 - Discharge water and surfactant
 - Total flooding of hazard area
- Combination Systems
 - · Discharge water and chemical agent

WATER-BASED FIRE SUPPRESSION

- Temperature detection with electronic activation
- Sprays appliances, hood plenum, exhaust duct
- Reliable: Continuous flow until fire is completely extinguished
- Meets UL300, IMC, and NFPA96
- Electronic monitoring and communication

UL300 TESTING FOR HOOD FIRE SUPPRESSION SYSTEM

SUMMARY

- Exhaust Flow Rates are critical: Find balance between low exhaust rate and peak performance
- Robust Filtration reduces greasy effluent, improves IAQ
- Dedicated MUA results in peak efficiency
- Demand Control Ventilation allows for greatest fan energy savings
- Factory-Welded Ductwork results in best performance, fewest leaks and fires
- Water-Based Fire Suppression ensures highest safety, significantly reduced fire risk

RESULT: INTEGRATED KITCHEN DESIGN

Streamlined KVS Design, from Hood to Fan

QUESTIONS?

